目次(1/4)

			<頁>				<頁>
第1章	半導	体パッケージの種類と使用例	7	第3章	半導	体の組立とは何か	37
	1	真空管	8		1	一般の組立イメージ	38
	2	真空管ラジオ	9		2	接合と接着の分類	39
	3	トランジスタ	10		3	半導体の接着組立の種類	40
	4	トランジスタテレビ	11		4	接着理論	43
	5	DIP	12		5	剥離(破壊)理論	48
	6	端子挿入型	13				
	7	家庭用TVゲーム機	14	第4章	QFP	の組立工程	55
	8	冷蔵庫・エアコン	15		1	QFP組立概要	56
	9	QFP	16			BGA組立概要	57
	10	SOP	17		バック	フグラインディング工程	58
	11	」リード表面実装型	18		3	バックグラインディング	59
	12	第二世代TVゲーム機	19		4	ストレスによる微小クラック	60
	13	BGA	20		5	ストレス除去法	61
	14	BGA、QFN	21		ダイシ	シング工程	62
	15	テレビ、パソコン	22		6	ダイシングとは	63
	16	放熱板付きBGA	23		7	キャリアリング構造	64
	17	第三世代TVゲーム機	24		8	粘着シート貼付け	65
	18	FCBGA	25		9	粘着シート貼付け工程	66
	19	第四世代TVゲーム機	26		10	ダイサ構造	67
	20	高性能コンピュータ	27		11	ダイシングブレード	68
	21	QFPのMCP	28		12	ステップカット方式	69
	22	車搭載機器制御	29		13	ダイシングのカット方式	70
	23	BGAのMCP	30		14	ダイシング順	71
	24	携帯電話、デジカメ	31		15	ダイシングの不良項目	72
	25	パッケージ外形の呼び方	32		16	チップ割れ	73
					17	UV照射の方法	74
第2章	半導体パッケージの役割		33				
	1	半導体パッケージの役割	34		ダイフ	ボンディング工程	75
	2	QFPの役割例	35		19	ダイボンディングの種類	76
	3	パッケージに必要な性能	36		20	樹脂ペーストダイボンダ構造	78

目次(2/4)

		<頁>			<頁>
21	各種金属特性	79	51	封止樹脂の製造方法	114
22	樹脂ペースト接着法の構造	80	52	樹脂の管理と廃棄処理	115
23	ダイ接着剤の役割	81	53	封止工程(トランスファモールド方式)	116
24	リードフレーム	82	54	封止金型断面構造と不具合例	118
25	リードフレーム製造方法(エッチング)	83	55	ポップコーン現象	119
26	リードフレーム製造方法(プレス)	84			
27	ダイピックアップ方法	85	タイノ	ドー切断工程	120
28	ダイ良否認識方法	86	57	タイバーの役割	121
29	ディスペンサの仕組み	87	58	タイバー切断・リード曲げ型構造	122
30	ディスペンス方式の種類	88	59	タイバー切断工程	123
31	樹脂ペーストの吐出	89	リード	[:] 外装めっき工程	124
32	樹脂ペーストのダイボンディング	90	60	電気めっきの理論	125
33	樹脂ペーストのキュア	91	61	電解脱脂	126
34	リードフレーム供給方式	92	62	バリ取り(高圧水洗浄)	127
35	ダイボンディング不良の種類	93	63	酸洗浄	128
36	ダイシェアテスト	94	64	エッチング	129
			65	電気はんだめっき	130
ワイヤ	アボンディング工程(接続工程)	95	66	中和	131
38	ワイヤボンディング用キャピラリ	96	67	水洗浄	132
39	ワイヤボンディングの概要	97		乾燥	133
40	ワイヤボンディングの接着構造	98		めっき評価方法	134
41	ワイヤボンダ構造	99		キング工程	135
42	ワイヤボンディングの方法	100		インクマーキング	136
43	リバースボンディングの方法	104		レーザマーキング	137
44	ワイヤプルテスト	107		レーザ光線の特徴	138
45	ボールシェアテスト	108		形成・個片化工程(シンギュレーション)	139
46	ピールテスト	109		リード先端切断工程	140
				リード成形(しごき曲げ)	141
封止.	工程	110		リード成形(ローラ曲げ)	142
48	トランスファモールド樹脂封止装置構造	111		リード成形(カム曲げ)	143
49	封止金型方式の種類	112		コプラナリティ(リード平坦度)	144
50	封止樹脂材料の構成	113		実装不良(はんだ濡れ性不良)	145
			装置。	・使用材料・器工具(治工具)まとめ	146

目次(3/4)

		<頁>			<頁>
第5章	BGAの組立工程	147	第10章 品質	管理	175
	1 BGAの基板	148	QC-	七つ道具	
	2 BGAの基板製造方法	149	1	特性要因図	176
	ワイヤBGA		2	チェックシート	177
	3 ワイヤBGAの組立工程	150	3	ヒストグラム	178
	4 はんだボールのセルフアライメント性	152	4	散布図	179
	5 基板ダイシング切断	153	5	パレート図	180
	6 一括封止BGA	154	6	管理図	181
	FCBGA		7	層別	182
	7 FCBGAの組立工程(バンプ付け)	155	静電	静電気対策	
	8 FCBGAのチップ個片化	156	8	静電気対策	183
	9 FCBGAの組立工程	157	信頼	頁性関係	
			9	バスタブカーブ	186
第6章	セラミックパッケージの組立工程	159	10	パッケージ信頼性試験	187
	1 セラミックパッケージのウェッジ(ツール)	160	11	MTBF·MTTR	188
	2 セラミックパッケージの組立工程	161	12	SAT(超音波探傷器)	189
	3 セラミックパッケージの封止工程	163	13	軟X線	191
	4 セラミックパッケージの気密試験	164	14	PL法、EM	192
			清浄		
第7章	TCPの組立工程	165	15	クリーンルーム	193
	1 TCPの組立工程	166			
	2 TCPとCOFの断面構造	167	第11章 環境	管理	194
			1	環境問題の高まり	195
第8章	WSPの組立工程	168	2	公害	196
	1 WSPの再配線工程	169	3	化学物質の危険性	197
	2 WSPの個片化	170	4	資源の枯渇(リサイクルの必要性)	198
			5	京都議定書	199
第9章	テスト工程	171	6	モントリオール議定書	202
	1 テスト工程フロー	172	7	グリーン製品	204
	2 テストで判る組立不良	173	8	RoHS指令	205
	3 雷気的機能テスト	174	9	化学物質の主な法体系	206

目次(4/4)

		<頁>
10	PRTR	207
11	MSDS	208
12	3 R (リデュース、リユース、リサイクル)	209
13	家電リサイクル	210
14	ゼロエミッション	211
15	ISO14000	212
第12章 安全	衛生	214
1	労働災害の現状	215
2	安全の三原則	216
3	ハインリッヒの法則	217
4	労働災害低減活動	218
5	KYT·安全配慮義務	219
6	有機溶剤中毒予防	220
7	採光および照明の衛生基準	221
第13章 生産	管理	222
1	製造原価の構成	223
2	損益分岐図表	224
3	歩留り計算法	225
第14章 設備	要表 安系	226
1	エアシリンダ構造	227
2	図面の表記法	228